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Abstract— This paper addresses the problem of building a
communication map of a known environment using multiple
robots. A communication map encodes whether two robots are
likely to be able to communicate between two arbitrary loca-
tions. Such a communication map is fundamental for reliably
deploying a multirobot system to accomplish a variety of tasks,
including exploration and environmental monitoring. Previous
work proposed offline approaches, which did not utilize data
measured by robots. This paper, utilizing Gaussian Processes,
proposes methods to efficiently build a communication map
with multiple robots. Specifically, the number of measurements
used to update the communication map, and the number
of possible candidate locations where robots should go are
reduced, by exploiting communication models that can be built
from the physical map of the environment. This allows robots to
take fewer measurements, travel less distance, be more efficient
in processing the data online, and get similar accuracy to
methods that consider all the locations in the environment.
Experiments with a team of TurtleBot 2 platforms validate the
approach.

I. INTRODUCTION

This paper aims at increasing the efficiency of a multirobot
system that builds an ad-hoc network communication map by
using prior information from the environment map.

A communication map encodes the information about
whether robots in two arbitrary locations can communicate
or not. Building communication map can not only be a
standalone task—for example to decide where to optimally
place routers in an indoor environment—but also is important
to efficiently accomplish other robotic tasks, such as explo-
ration [1], [2], [3], environmental monitoring [4], and search
and rescue [5]. Indeed, it is experimentally shown that com-
munication constraints degrade the system performance [6].
Many recent work is explicitly considering communication
in the multi-robot systems design [7], [3], [8]. All these
papers share in common the assumption that: robots have a
communication map readily available, which is not available
in practice [9], or that a conservative communication model
is used, such as limited range line-of-sight, limiting the
capabilities of the robots. Having a reliable communication
map allows robots not to be hindered by the communication
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Fig. 1: The robots, TurtleBots 2 equipped with a WiFi don-
gle, deployed in an environment to build its communication
map.

constraints, when choosing where to go, and to have a more
efficient multirobot coordination.

In this paper, building on our previous work [10], we pro-
pose a system for the efficient construction of communication
maps, where the communication source is not stationary. We
use a team of robots capable of measuring signal strength
between them and a Gaussian Process (GP) to model the
communication map. Considering every location in the free
space where robots can take measurements would make the
robots travel extensively. As a result, the construction of a
communication map would be too time consuming to be
feasible. Thus, limiting the numbers of candidate locations
to informative places is important to accomplish such a
task in an efficient manner. Specifically, we use a priori
communication models that can be built out of the physical
map of an environment to reduce the number of candidate
locations, to decrease the exploration time and the total trav-
eled distance. The key idea is to consider those that provide
some distinctiveness, determined with such prior models.
In addition, we filter out input measurements to the GP to
reduce GP’s computational complexity—i.e., O(n3) [11] for
n observations. In this way, the proposed system can be used
more effectively for online operations, as it scales better over
time and space. We describe four different communication
models for WiFi communication along with experiments to
test how close to real data they are. We then present how
such models can be used to filter observations to update the
communication map and to generate candidate locations used
by the sampling strategies. A series of experiments with a



team of TurtleBots 2 (see Figure 1) show the effectiveness
compared to methods that do not exploit such information.

Differently from our paper, in the literature, typically,
the problem of building a communication map with respect
to a fixed router in the environment is considered [12],
[13]. Such a communication map can be used to improve
indoor localization [14]. Some previous work involved the
use of hand-held devices to create a radio map [15]. Other
approaches exploited a single robot exploring an environment
and localizing a radio source [16] and multiple robots to
map a stationary source without any coordination [17].
Kemppainen et al. [18] proposed a method for a single
robot to explore a magnetic field that can be measured in an
environment so that it can localize. Hsieh et al. [19] propose
some offline methods to compute efficient joint paths for
small teams of robots, whose task is to collect signal strength
measurements from a set of predefined locations.

The paper is structured as follows: the next section de-
scribes the problem in detail. Section III presents an overview
of the system that our contributions are based on, highlight-
ing the proposed approach in this paper. Section IV describes
communication models for WiFi communication and how
such information is used by the robots to make the com-
munication map building process more efficient. Section V
shows experimental results from numerous experiments with
real robots. The paper concludes with lessons learned and a
discussion with interesting research directions.

II. PROBLEM STATEMENT

Similar to [10], m mobile robots are deployed in a known
bounded environment with obstacles, where free space is
denoted as A ⊂ R2 and p ∈ A denotes a location that can
be occupied. Robots with a laser range finder can localize
themselves within a global coordinate system. Further, they
are equipped with an omni-directional WiFi transceiver, to
communicate with peers over the radio channel within a
maximum communication range allowed by the device.

Robots select online a sequence of candidate locations,
to measure the signal strength between two locations. Mea-
surements are included in the communication map. Note that
robots can collect data while traveling to a selected location.

A communication map represents information about com-
munication links availability between ordered pairs of loca-
tions in A. It is defined as a function f̂ : A × A → R≤0
estimating the received radio signal strength, RSSI, in dBm,
f between any two locations pi and pj . The closer it gets to
zero, the higher the communication link reliability between
pi and pj . Let us call xij = (pi,pj) pair of locations in
the freespace and f̂(xij) the estimate of the signal strength
from pi to pj . As communication links not necessarily are
symmetric, in general, f(xij) 6= f(xji) [20].

An example of a communication map instance is presented
in Figure 2, by fixing the location of the transmitting robot.
Obviously, locations with highest RSSI value will be the
locations closest to the transmitting robot.

This paper, differently from [10] that considers all possible
locations in an environment (up to a discretization), focuses

Fig. 2: Example of communication map. For clearly differen-
tiating the locations where robot can not visit in the physical
map, we are not allowing the GP to predict (and plot) RSSI
values at locations inaccessible to the robots.

on the following two questions: First, which measurements
xij , f(xij) should be used for updating the communication
map; second, which candidate locations pj should be con-
sidered by the robot, to visit and collect data, for a fixed
pi. Given that an environment free space can be arbitrarily
large, reducing the number of observations both for building
on-line the communication map and deciding where to go is
important for reducing the traveled distance and increase the
scalability.

III. BACKGROUND

The multirobot system that the proposed approach is going
to be integrated in is composed of two main components,
described in the following two subsections: the modeling
of the communication map and the robots decision making
process on where to go. Please refer to [10] for the full
description.

A. Gaussian Process based Communication Map

The communication map is generated from a GP [11],
given the spatial correlation that radio signal strength dis-
plays. Such a model can also be used to predict signal
strengths in areas where measurements have not been col-
lected yet, with an associated uncertainty. Specifically, f̂
can be estimated as a posterior distribution fitted over a
set of noisy observations made by robots which explore
and coordinate in the environment to collect signal strength
measurements. Assume that the robot team as a whole
collected q measurements over the environment. Let Y =
[y1, y2, . . . , yq]T and X = [x1,x2, . . . ,xq]T be the set of
those measurements and the set of the corresponding pairs of
locations from where they have been collected, respectively;
recall that xi ∈ A2. The signal strength observation yi =
f(xi) + ε is affected by additive sensing error, which is
assumed to be i.i.d. and ε ∼ N (0, σ2

n). As covariance
function k(x,x′), which expresses the spatial correlation
between any two values of f , a radial basis kernel (RBF)
is used, as done in the mainstream approach:

k(x,x′) = σ2
f exp

(
− |x− x′|2

2l2

)
, (1)



where the signal variance σ2
f and length scale l2 are param-

eters that indicate the amplitude and the smoothness.
To make notation easy to follow, given X1 =

[x11, . . . , x
q
1]
T and X2 = [x12, . . . , x

q
2]
T the locations of two

robots, we identify with K(X1, X2) the q× q matrix, where
Kij = k(xi1, x

j
2) and with Iq the q × q identity matrix.

The correlation between the observed function values is
represented by the following equation:

cov(Y) = K(X,X) + σ2
nIq. (2)

Here, the GP is assumed to have a zero mean function, as
typically done in literature [11]; therefore it is fully specified
by the parameter vector θ = [σ2

n, σ
2
f , l

2]T . Such a parameter
vector is computed as the one maximizing the observations
log-likelihood, that is,

θ∗ = argmax
θ

logP (Y | X, θ), (3)

where logP (Y|X, θ) = − 1
2

(
YTcov(Y)−1Y −

log |cov(Y)| − n log 2π
)

.
To calculate an estimate of the signal strength, θ∗

optimal parameter vector is used in unobserved regions
by evaluating the posterior. Specifically, called W =
[w1,w2, . . . ,wl]T a set of arbitrary location pairs for which
a signal strength estimate is requested, P (f(W) | X,Y) ∼
N (µW,ΣW), where the mean vector is obtained as µW =
K(W,X)cov(Y)−1Y and represents the estimate f̂(W),
while the covariance matrix is given by ΣW = K(W,W)−
K(W,X)cov(Y)−1K(W,X)T . Note that the main diago-
nal of ΣW is called predictive variance and quantifies the
uncertainty of estimates in W.

Because of the inverse operation of the covariance matrix,
the complexity of updating the GP with n number of
observations is O(n3). As such, in this paper we address the
following question: is it possible to wisely select observations
to include in the update of the GP so that the model is still
accurate, but at the same time the multirobot online system
is not overloaded?

B. Sensing strategies

In this work, two main sensing strategies are adopted to
decide pairs of locations for collecting measurements, and
both are based on a leader-follower scheme. Specifically,
the first one, called Pairwise Mapping (PM), divides a team
of robots into pairs, where one acts as a leader, and the
other one as a follower. Pairs of locations are selected by the
leader preferring those that display high predictive variance
inferred from the GP. In addition, other robots’ plan is
considered in this decision: if two selected locations are close
to locations selected by other robots, they are discarded. To
ensure robustness, a backup pair of locations where robots
could communicate is also selected, in case robots cannot
communicate from the new locations. The two locations
are then assigned to the robots to minimize the maximum
traveled distance. The second one, called Region Mapping
(RM), allows one leader to have more than one follower.

The idea is that instead of minimizing the uncertainty of
the communication map by iteratively selecting pairs of
locations, with RM, the objective is to select and minimize
the uncertainty of a given region centered in a selected
location from the leader. First, the leader randomly selects
a location pc, as a center for the region, taking into account
the associated uncertainty and possible overlaps with other
teams of robots. In that region, locations to be assigned to the
followers are iteratively chosen, considering the highest sum
of predictive variance when paired with pc and sufficiently
far apart from the already chosen waypoints. Also with the
RM strategy, backup locations are decided to avoid any
significant disconnection between robots.

In [10], the whole free space was discretized according to a
minimum distance set between locations and sampled, up to
a maximum communication range for an arbitrary location.
This results in a large number of possible observations. In
this paper, we pose the question: can we utilize some prior
models to reduce the set of possible candidate locations, to
improve the performance of the system?

IV. COMMUNICATION MODEL BASED FILTERING

In this section, first, we present the a priori communication
models used, with an evaluation of their fidelity; second, we
show how such models can be used to filter observations for
updating the communication map and locations where robots
should go; see Figure 3 to see how the proposed approach
modifies the one in [10].

Current 
robots' 
locations 
with 
associated 
RSSI

GP

Sensing 
strategy

Assigned 
goals to 
robots

Measurements 
and candidate 
locations filter

Fig. 3: Block diagram representing the proposed system
integrated with that of [10]; in red, the proposed modification
to the communication exploration system.

A. Prior from Communication Models

In general, it is hard to directly estimate the RSSI value
knowing the map of an environment, because, for example,
the compositions of the obstacles are not known. However,
in the communication literature, some models—such as Free
space, Two-ray, Ten-ray, Wall Attenuation Factor model, and
Multi Wall Attenuation Model [21]—have been proposed
estimating the signal’s power loss during propagation (also
known as path-loss)1. Each of these models vary in terms of
computation complexity and accuracy. Further, each model

1It should be noted that all these path-loss models are independent of the
used communication frequency, i,e., not restricting the analysis to WiFi/LTE
etc.



usually has several parameters and quantifying them accu-
rately is hard, as they depend on the considered physical
environment. However, such models have been shown to per-
form relatively well, when the parameters are predicted from
the training data obtained from the actual measurements [22].

We selected and evaluated four communication path-loss
models with varying complexity that have been tested in
indoor environments. In the following, the equations for the
different models2, referring to transmitter pi and receiver pj :

a) Distance Model (DIST): A free space distance based
path-loss model assumes the signal is passing through vac-
uum; the path-loss observed by the signal depends only on
the Euclidean distance between locations of transmitter and
receiver [23], [21]:

Ldist(pi,pj) = −10 log10
[ √

GLλ

4πd(pi,pj)

]2
, (4)

where GL is the product of transmitted and receiver antenna
gains3; λ is the wavelength of the transmitted signal; and d()
is the Euclidean distance between transmitter and receiver
locations.

b) Wall Attenuation Factor Model (WAF): An empirical
model [22], which assumes the physical map of the environ-
ment to be available beforehand, as path-loss is influenced
by the number of walls between transmitter and receiver, in
addition to the Euclidean distance:

Lwaf(pi,pj) = Ldist(pi,p0)− 10n log10
(d(pi,pj))

d0
−
{
w(pi,pj)×WAF if w(pi,pj) < C,
C ×WAF otherwise

, (5)

where Ldist(pi,p0) is the path loss at reference distance
between transmitter pi and arbitrary p0; n indicates the rate
of change in path-loss; w(pi,pj) is the number of walls
on a straight line between transmitter and receiver, C is an
empirical constant—i.e., the maximum number of walls that
can make a difference in path-loss; WAF is a constant factor
specific to the type of each wall.

c) Multi-Wall Model (MWM): Another empirical
model [24] following Equation 6 as:

Lmwm(pi,pj) = LFSL(pi,pj) +
∑N
l=1 klwl(pi,pj) + kf f(pi,pj) , (6)

where LFSL(pi,pj) = Ldist(pi,p0)+10n log(d(pi,pj)) mod-
els a free space path-loss model; wl() is the number of walls
of lth type between transmitter and receiver, kl is a parameter
for the attenuation affecting the signal for wall of type l;
f(pi,pj) is the number of floors between transmitter and
receiver, and kf is the attenuation parameter observed by
signal due to the type of that floor.

d) ITU Radio communication Model (ITU): An em-
pirical model, used by IEEE 802.15 Working Group for
Wireless Personal Area Networks [25], for testing the pro-
posed channel model of a signal propagating in an arbitrary
environment:

Litu(pi,pj) = 20 log10 f + n log10 d((pi,pj)) + kf f((pi,pj))− 28 , (7)

2Note a slight change of notation compared to the original papers to make
notation uniform and highlight variables and parameters.

3Gain is defined in terms of the antenna’s capability to send/receive
signals in a direction.

TABLE I: Errors observed in the calculated RSSI values, for
6 experiments performed varying locations of fixed robot;
while moving robot follows a stable fixed path and collects
data

Path-loss Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
Model Mean stdev Mean stdev Mean stdev Mean stdev Mean stdev Mean stdev
Distance 8.09 4.98 9.40 7.27 9.40 7.28 17.56 9.27 10.89 8.54 6.14 5.62
WAF 12.02 10.24 15.33 12.08 15.34 12.09 27.29 10.87 20.06 11.85 17.47 7.04
MWM 7.98 5.01 9.37 7.26 9.38 7.27 17.66 9.29 11.15 8.58 4.03 3.66
ITU 11.33 7.84 15.49 10.28 17.79 7.09 29.02 11.74 20.51 9.66 15.40 6.43

where n is the distance power loss coefficient; f is the
communication frequency (MHz); d() is the distance be-
tween the transmitter and receiver (in m); kf is the floor
penetration loss factor (dBm); f() is the number of floors
between transmitter and receiver.

Each parameter should be fine-tuned according to the
specific environment. Values for parameters are heuristically
suggested in the related papers, usually for a communication
signal at 2.4GHz (WiFi) for different scenarios, including
indoor office environment.

Considering the transmitting power Tpower (dBm), the
RSSI between transmitter and receiver can be then calculated
as:

RSSI(pi,pj) = Tpower − L()(pi,pj). (8)

As a physical map of the environment is available, a prior
communication map can be computed for every location
reachable by a receiver robot, given a fixed location for a
transmitting robot. Note that as robots cannot access some
locations—e.g., because of doors—and maps are pre-built
by the robots, the number of walls is an estimate of the
actual number of walls. Specifically, every change from
freespace cell and occupied cell in the grid is counted as
one wall. Maps are preprocessed in such a way that small
objects are removed from the map and thus not counted
as wall. Generating a prior communication map using the
different models shows that locations closer to the fixed
robot observe higher RSSI values, while distant locations
have lower values. While the trend seems to be similar, the
RSSI values from these priors are different; among them,
WAF model seems to weigh more the different terms and as
such the returned values are smaller.

We evaluate the accuracy of such models, calculating
the difference between the measurements collected by two
robots described in Section V and the RSSI values from the
communication models (error). In particular, we conducted
6 different experiments in the engineering building of the
University of South Carolina4. Each experiment involved one
robot fixed at a different location, and the other robot follow-
ing a precomputed coverage path. Each robot measures the
WiFi signal 10 times a second along with its position in the
map. The physical environment used for these experiments
is depicted in Figure 4a.

Table I shows mean (and standard deviation) error for
the 6 different experiments. It is worth mentioning that:

4All experiments were conducted at night time, so the interference due
to moving objects/humans is minimal, except for the people performing the
experiment.



we observed a change of 8 dBm to 10 dBm in the RSSI
value while changing the height of the antenna (by a few
centimetres) at the moving robot multiple times. An accuracy
error of <20 dBm is comparable to what is shown, for
example in [22]. As such models display a relatively low
error, especially MWM, it is justified to use such models as
priors for the robots constructing a communication map, as
shown in the next section.

B. Use of Communication Models Prior

For a given location of a transmitting robot—leader in the
strategies described in Section III—we propose an algorithm
to automatically generate a set of locations that can be
provided as goal to the followers and can be used also for
integrating measurements in the GP. The main idea is to
choose locations that are informative, namely those which
present some change in the field, as constant values can be
easily approximated by a model.

Mathematically speaking, the RSSI slope is determined at
each location, based on the prior communication map built
from the communication models. This is basically the first
order derivative of the RSSI value at every location. We also
determine the change of slope between neighbor locations
in the map. If the change of slope between two locations
crosses a threshold (τ ), we select that location as one of the
possible goals of the moving robot (follower). This idea is
explained in detail in Algorithm 1.

Algorithm 1 Goals for Moving Robot to Pick Observations
Input: A (physical map of the environment), pi (possible locations that robots

can occupy), N = |A|, comm model, (x1, y1) ∈ A (considered location of
transmitter), τ (threshold)

Output: List of candidate goals for the moving robot {(xd
i , y

d
i )}, ∀i ∈ goals

1: for (x2, y2) ∈ pi − (x1, y1) do
2: rssi(x2,y2)

(x1,y1)
= calculate rssi(x1, y1, x2, y2, comm model); . Using

appropriate Equation from 4,5,6,7
3: end for
4: goals = get goals(rssi, x1, y1, N, pi);
5: return goals
6: procedure GET GOALS(rssi, x1, y1, N, pi)
7: goals={} . Return variable
8: for (x2, y2) ∈ pi do . Calculate the slope of RSSI
9: rssi slope(xi,yi)

(x1,y1)
= calculate slope(x1, y1, x2, y2, rssi)

10: end for
11: for (x2, y2) ∈ A do . Calculate the slope of rate of change of RSSI
12: rssi change slope(xi,yi)

(x1,y1)
= calculate slope(x1, y1, x2, y2, rssi slope)

13: end for
14: for (x2, y2) ∈ pi do
15: if rssi change slope(xi,yi)

(x1,y1)
> τ then

16: goals.add((xi, yi))
17: end if
18: end for
19: return goals
20: end procedure

Additionally, locations generated from the algorithm can
be used to filter the measurements. If measurements are
taken close to those locations within a given range, they
are included in the communication model. It is important
to note that: τ needs to be generated heuristically, for each
communication model separately. When τ is high, robot may
not receive sufficient number of goals to predict accurately,
while lower τ could result in too many goals for the robot.
From our preliminary experiments, τ = 11 (±10%) is

a reasonable value to all the four models, and provided
between 30-120 goals for various communication models—
among 212 possible locations—in the tested environments.
Note that, to account for inaccuracies of the prior model,
locations within a given radius are added to the list of
candidate locations.

The proposed method to select locations is integrated
in the PM and RM strategies by filtering the locations
considered for the follower. PM and RM algorithm chooses
the set of goals, i.e., leader choosing one (or) many followers
according to the strategy briefly described in Section III.
Further, such selected locations are also used to determine
which measurement to include in the communication map.

Using the data collected during our experiments described
in the previous section—i.e., one robot fixed at a location,
while the other moving along a fixed, known path—we
evaluate the GP with all measurements, and the GP with
filtered measurements from the proposed method.

In general, the GP with filtered data maintains low vari-
ance in GP predictions and low Root Mean Square Error
(RMSE), and at the same time the GP training time reduces
by 50%, compared to the GP with all data. For example, the
Root Mean Square error between the observed data and the
predicted values from the GPs, in one of the experiments, is
11.014 for the GP with all data and 11.03 for the GP with
filtered data.

These experimental results validate the use of such a
filtering approach. Note that such a priori information could
also be used within a GP, by changing the mean function;
however, the standard definition for the GP worked well
enough, without adding complexities for estimating the hy-
perparameters.

The next section shows the proposed method in an online
scenario where robots decide “where to go” to build the
communication map.

V. EXPERIMENTAL EVALUATIONS

As we already showed a validation for filtering the training
data on the GP and as we are assessing whether such
prior communication models could work in a real scenario,
simulations are not run as they would not reflect the real
world communication channel performance. We use a fleet
of TurtleBot 2 platforms5, equipped with an RGB-d sensor
(Microsoft Kinect) that allows the robots to localize together
with odometry information. The maps used for localization
are built in a setup phase and are represented as an occupancy
grid. Specifically, a single robot is manually driven around
the environment to collect RGB-d readings which are then
processed using the ROS gmapping package [26].

We considered two relatively big indoor environments
with different characteristics in the Swearingen Engineering
Center at the University of South Carolina, depicted in
Figure 4. Figure 4a is characterized by long corridors with
some intersecting short corridors and one small loop. Note
that between the two long corridors, there is an outdoor

5http://www.turtlebot.com



(a) Corridor surrounding
Lab Workspace (Lab-
Corridors 66m× 92m)

(b) Corridor surrounding
the Faculty Workspace
(Office-Corridors
30m× 70m).

Fig. 4: Two environments, portions of third floor at Swearin-
gen Engineering Center, University of South Carolina.
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Fig. 5: Evaluating the Proposed (PM-MWM and RM-MWM)
Approaches with Experiments Performed by TurtleBot 2 in
Lab-Corridors.

space, which the robots cannot access. Figure 4b is instead an
environment with corridors surrounding small office rooms.

After running some preliminary experiments, we decided
to use MWM as the communication model to generate
candidate locations using Algorithm 1, because it provides a
good number of candidate locations and has good accuracy
(see Section IV-A). We execute the updated algorithm on
a real system with two Turtlebot 2 robots. The modified
versions of PM and RM are compared against the basic
version defined in [10], and on a baseline strategy, RAND,
where robots independently move to random destinations
over the environment while taking WiFi measurements with
respect to other teammates.

For each of the two physical environments mentioned in
Figure 4, we verified the performance of both proposed and
base line methods; by using two Turtlebot 2 robots, for a
20min duration. The strategies are evaluated by considering
the quality of the GPs throughout the mission; by merging

all the collected data in a global rendez-vous after every
5min, i.e., traveled distance and the GP processing time.
Quality is measured both in terms of RMSE, calculated as the
difference between measurements collected with locations
along fixed trajectories (described in the previous section)
and the predicted values at those locations by the GP
trained online, as well as in terms of the average predictive
standard deviation of the predictions. Note that, obviously,
it is impossible to have a full ground truth as it would take
too long for the robots to cover continuously the 4D space.

Figure 5 shows results for experiments performed on the
map shown in Figure 4a. Our proposed PM-MWM approach
spends less time updating the GP-based communication
map—e.g., at 20min, about 1.2 s for PM-MWM, compared
to 3 s for PM. Moreover, robots consistently travel less
distance at a given time slice (about 30%), preserving good
quality in terms of RMSE and predictive standard deviation
compared to the other strategies without communication
prior—e.g., at 5min with PM-MWM the traveled distance is
about 15m with a predictive standard deviation of 10 dBm,
compared to 20m with PM and 12 dBm as standard devi-
ation. Also, note that, with Random strategy, robots cover
longer distance but has higher predictive standard deviation.
Figures 5c and 5d show that the predictive standard devia-
tion of the proposed approach is lower than the compared
methods while maintaining approximately the same RMSE
value. Similar results are obtained in the other environment.

VI. CONCLUSION

In this paper, we presented a method for making the
process of building communication maps more efficient. In
particular, measurements to be integrated into a communica-
tion map and candidate locations to be chosen as goals by
robots are filtered, by using communication models as prior.
Communication models, which are built starting from the
physical environment map, can provide information about
distinctiveness of locations, by calculating first and second
order derivatives. Experiments with real robots validate the
accuracy of such models for the purpose of building com-
munication maps. Moreover, the proposed approach showed
an improvement over other methods in terms of traveled dis-
tance and computation time, while maintaining comparable
RMSE and predictive variance.

Extending the approach to efficiently consider noise in
the input space is currently under research. Future work will
consider more complex models that consider multiple paths.
Further, online update of the communication model prior
according to measurements and possible direct integration
in the Gaussian Process would be beneficial for improving
the selection of candidate locations. This would allow robots
to replan as they acquire new measurements. In addition, a
method that allows long-term monitoring of WiFi signal is in
our plan. The task of building communication maps and its
use in the end will be integrated together with other missions
robots might have, such as exploration [3] or environmental
monitoring [27]. Extrapolating this work to outdoors/under-
water/aerial environments can be considered for future work.
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