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Abstract
This paper tackles the problem of constructing a communication map of a known environment using multiple robots. A
communication map encodes information on whether two robots can communicate when they are at two arbitrary locations
and plays a fundamental role for a multi-robot system deployment to reliably and effectively achieve a variety of tasks,
such as environmental monitoring and exploration. Previous work on communication map building typically considered only
scenarios with a fixed base station and designed offline methods, which did not exploit data collected online by the robots.
This paper proposes Gaussian Process-based online methods to efficiently build a communication map with multiple robots.
Such robots form a mesh network, where there is no fixed base station. Specifically, we provide two leader-follower online
sensing strategies to coordinate and guide the robots while collecting data. Furthermore, we improve the performance and
computational efficiency by exploiting prior communicationmodels that can be built from the physicalmap of the environment.
Extensive experimental results in simulation and with a team of TurtleBot 2 platforms validate the approach.
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1 Introduction

Communication capabilities are fundamental for effective
deployment and operation of multi-robot systems in several
tasks–such as exploration (Yamauchi 1998; Quattrini Li et al.
2016; Banfi et al. 2016), environmental monitoring (Dun-
babin and Marques 2012), and search and rescue (Murphy
et al. 2016). In several multi-robot systems, some level of
communication between robots is assumed, so that situa-
tional awareness and a high level of cooperation can be
achieved (Amigoni et al. 2013). Recent work is explic-
itly considering communication in the multi-robot system
design (Hollinger and Singh 2012; Banfi et al. 2016; Gregory
et al. 2015), so that the robots are not hindered too much by
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communication constraints (Tuna et al. 2013). To guarantee
effective coordination throughout a task, robots need to know
whether communication between two robots is possible from
twoarbitrary locations, before evenmoving there. Such infor-
mation can be encoded in a communication map. Most of the
papers designing communication-aware multi-robot systems
share in common the assumption that robots have already
a communication map. This, however, is not always a safe
assumption, as a communication map is usually not available
in practice (Liu and Cerpa 2011). Other approaches assume a
conservative communication model—such as limited range
line-of-sight—which, as drawback, limits the capabilities of
a multi-robot system. Having a reliable communication map
is beneficial both as a standalone task—for example to decide
where to optimally place routers in an indoor environment—
and to efficiently accomplish other robotic tasks so that, when
choosing where to go, robots can account for communication
constraints (Amigoni et al. 2017).

In this paper, we propose a system for the efficient online
construction of communication maps by using a multi-robot
system that collects communication quality measurements in
the environment (see Fig. 1 for the experimental setup used
in this paper).

In the literature, typically, most of the work considers the
problem of building a communication map with respect to a
fixed router in the environment (Mirowski et al. 2014; Ferris
et al. 2007). Other work designs some offline methods to col-
lect signal strength measurements from a set of predefined
locations (Hsieh et al. 2008; Riva et al. 2018). In many prac-
tical scenarios, a dense coverage is not feasible; for instance,
when the time for the task is limited or when the environment
is unknown.

Differently from the literature, in this paper, we consider
a mesh network—a network where the nodes (robots) are not
stationary and can communicate with each other in a range.
Measurements are collected between pairs of robots as the
mission progresses, allowing for online decisions on where
to go. In particular, the main original contributions of this
paper are:

– introducing a formal representation of communication
maps based on Gaussian Processes (GPs);

– designing of two online strategies based on a leader-
follower paradigm to decide where the robots should go
to collect measurements;

– exploiting prior knowledge from wireless communica-
tionmodels to reduce thenumber of locations to bevisited
by the robots, so that the total traveled distance decreases;

– implementation of the proposed system in the Robot
Operating System (ROS) framework;

– extensive experimental activities in simulation and with
real robots.

Fig. 1 TurtleBot 2 robots equipped with a WiFi dongle, deployed in
the engineering building at the University of South Carolina, building
a communication map

Fig. 2 Communication graph, in an environment where Turtlebot 2
robots have been deployed, built using a conservative communication
model (edges in red)—i.e., limited range line-of-sight—and using the
communication map built by our proposed method (edges in cyan)
(Color figure online)

The main motivation of this work is to improve coordina-
tion of multi-robot systems that can use such communication
maps to reduce the hindrance of communication constraints.
Figure 2 shows a communication graph, where edges encode
whether robots can communicate between locations in an
environment. Edges using a conservative communication
model and utilizing the communication map built by our
proposed method are shown in red and cyan, respectively.
With our approach, the number of edges is more than 300%
of those using a conservative communication model. This
allows robots to accomplish tasks more efficiently as they
have more freedom to plan to reach locations from where
they can still maintain communication.

The construction and use of communication maps is
particularly important in situations where communication
infrastructures are not available or security issues prevent
their use, leaving the adoption of ad hoc networks the only
viable solution. Examples can be found in disaster ormilitary
scenarios (Ochoa and Santos 2015).
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This paper extends our preliminary results in Banfi et al.
(2017), Penumarthi et al. (2017). In particular, it includes
more detailed descriptions of the methods in Sect. 4 and a
more general formulation of the GP with an arbitrary mean
function. In addition, an in-depth experimental analysis is
presented in Sect. 5, adding experiments in simulation with
the filtering technique, as well as experiments where we use
different GP mean functions.

The structure of the paper is as follows. Section 2 presents
the related work in communication map building. Section 3
formally describes the multi-robot communication map con-
struction problem we address. Section 4 presents the mod-
eling, the sensing strategies, and the use of communication
models to improve the process of building communication
maps. Section 5 reports experimental results from several
experiments in simulation and with real robots. Section 6
concludes the paper and discusses future research direc-
tions.

2 Related work

The communication mapping problem has been typically
studied assuming that a router is placed in a fixed position
in the environment. Furthermore, many papers focus on the
use of WiFi signal strength measurements for localization.
Mirowski et al. (2014) investigate different clustering-based
methods to gather WiFi samples. Such WiFi samples can
then be processed for finding WiFi signal fingerprints used
for localization in an environment. Ferris et al. (2007) use
Gaussian Process Latent Variable Models for localizing a
robot as well as reconstructing a topological connectivity
graph from signal strength measurements. Similarly, Ladd
et al. (2005) use aHiddenMarkovModel to track the position
of a moving operator through signal strength measurements.
Scholl et al. (2012) build a hand-held system for mapping the
radio signals by following a pre-specified pattern. Themap is
then used again for localization purposes. Kemppainen et al.
(2010) propose a method for a single robot to explore and
build a model of a magnetic field in an environment. Such a
model is then used by the robot to localize in the environment.

Some works provide methods for robust communication
between robots. Im et al. (2014) propose a robotic exploration
system that exploits a prior communication model to pre-
dict disconnections and react accordingly. Fink et al. (2013)
design a system for determining robot trajectories to guaran-
tee a communication network topology.

Other approaches exploit a single robot exploring an envi-
ronment and localizing a radio source (Twigg et al. 2012)
and multiple robots to map a stationary source without any
coordination (Fink andKumar 2010). Hsieh et al. (2008) pro-
pose some offline methods to compute efficient joint paths
for small teams of robots, whose task is to collect signal

strength measurements from a set of predefined locations.
For the same problem, Riva et al. (2018) derive some theoret-
ical guarantees and propose greedy methods for an arbitrary
number of robots.

A related body of work designs algorithms to explore
different types of phenomena, such as position of obsta-
cles (Yamauchi 1998), water quality (Manjanna et al. 2018;
Das et al. 2015), and gas leakage detection (Lilienthal et al.
2001). These works, while desirable, do not require a strict
multi-robot coordination to build a map of a phenomenon. A
more abstract account of these problems is provided bymeth-
ods for informative path planning, like for example Best et al.
(2018); Zlot et al. (2002); Marchant et al. (2014); Singh et al.
(2009). However, thesemethods cannot be directly applied to
our problem since they usually assume that themeasurements
are performed by the single robots independently, while in
our problemmeasurements are pairwise and require the coor-
dinated activity of two robots.

In this paper, motivated by applications for building com-
munication maps, we aim at tackling a realistic scenario with
the following assumptions:

– There is not a fixed router, but all robots can commu-
nicate with each other, forming a mesh network. This
makes the problem more challenging, as the robots need
to coordinate with each other to collect measurements, at
least, pairwise.

– The robots can perform online decisions on where to go
to collect WiFi signal strength measurements. Because
of the size of the state space, as shown in the next sec-
tions, it is not feasible for the robots to densely collect
measurements over the environment. As such, strategies
are necessary to perform online decision making.

In the following section, we formally state the problem
addressed in this paper.

3 Problem statement

We consider a known bounded planar environment with
obstacles, where free space is denoted as A ⊂ R

2 and
p ∈ A denotes a location that can be occupied by a robot.
There arem mobile robots deployed inA, starting from arbi-
trary initial locations p1, . . . ,pm ∈ A. They can localize
themselves within a global coordinate system, for example
using a laser range finder or an RGB-d camera. In addition,
they have an omni-directional WiFi transceiver (equal for
all robots), to communicate with peers over the radio chan-
nel within the maximum communication range allowed by
the device. The environment is represented by the robots
as a two-dimensional occupancy grid, in which square cells
with fixed size are marked either as free or occupied. The
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robots use such a representation to compute high-level paths
between centers of arbitrary cells (that compose the set of
discrete locations where the robots can be). The low-level
controller of the each robot then accounts for kinematic con-
straints and smooths the trajectory as the robot executes the
computed path.

The goal is to incrementally find a sequence of location
pairs in A for the robots and to collect signal strength mea-
surements between each pair of locations in order to build a
communication map. Two metrics are considered to evaluate
the performance of the system: traveled distance and quality
of the communication map. Note that, as the robots move
towards their next selected locations, measurements are col-
lected along the paths and a partial communication map can
be updated continuously.

Notice also that, in this paper, heading is not consid-
ered, as robots are equipped with omni-directional WiFi
transceivers. An interesting future work is to equip the robot
with directional WiFi transceivers to increase the communi-
cation range. In such a case, the goal is to find a sequence of
pose pairs—i.e., heading needs to be considered.

More formally, a communication map, representing the
information about communication links quality between
ordered pairs of locations in A, can be formalized as fol-
lows: a function f̂ : A × A = A2 → R≤0 estimating the
received radio signal strength, RSSI f : A2 → R≤0, in
dBm, between any two locations pi and p j . Such a func-
tion has a 4D input space, making the state space to explore
large. The closer the values of f and f̂ (which are negative,
see above) get to zero, the higher the actual and estimated,
respectively, communication link reliability between pi and
p j . The range is typically between -93dBm and -10dBm
when the transmitter and receiver are very far and very close,
respectively. Our formulation can be easily adapted to other
metrics used for estimating the quality of a communication
channel. For sufficiently large environments, the availabil-
ity of a communication link between two far locations can
be excluded a priori, knowing the indicative range of the
transceiver. Therefore, locations lying outside a maximum
range Rc can be excluded from the communication map. Let
us call xi j = (pi ,p j ) a pair of locations in the free space
of A and f̂ (xi j ) the estimate of the actual signal strength
f (xi j ) from pi to p j . Communication links are not necessar-
ily symmetric as shown experimentally by Heurtefeux and
Valois (2012); thus, in general, f (xi j ) �= f (x j i ). We build
static communication maps in which the estimate of the sig-
nal strength between pi and p j is independent of time. In
other words, we assume to work in environments that are
static and where, as a consequence, signal strengths between
locations do not change with time. The methods we pro-
pose can be generalized for dynamic environments with the
introduction of detrimental effects (having uncertainty at xi j

Fig. 3 Example of communication map, fixing the location of one of
the two robots (where the peak is). Note that the signal strength is not
plotted at locations in the environment inaccessible to the robots

increasing with time as long as no measurement is taken
there) and penalizing the utility of taking measurements at
those xi j that expose a high variability among repeated mea-
surements. The study of this extension is left for futureworks.

An example of a communicationmap instance is presented
in Fig. 3, by fixing the location p of one of the two robots
(the transmitting robot in this case). Clearly, the closer to the
transmitting robot, the higher the RSSI value.

Note that there are infinite instances of such a representa-
tion of a communicationmap, one for every possible location
p of the transmitting robot in the free space of the environ-
ment.

In general, we assume not to have any prior information
on the communication map. However, as we will show in the
next section, a communication map can be calculated as a
prior from the physical map of the environment.

The aim of this paper is to design efficient online sens-
ing strategies that produce a sequence of location pairs from
which WiFi signal strength measurements can be collected
in order to build a “good” communication map f̂ � f
while limiting the number of acquired samples and, as a
consequence, travelling the shortest possible distance. The
similarity between f̂ and f , namely the quality of the com-
municationmap, is calculated as the rootedmean square error
between signal strength predicted by f̂ and the actual mea-
surement of f over sampled pairs of locations.

4 A Gaussian process-based sensing system

In this section we present, first, how the communication map
is represented in our approach; second, the strategies used
to decide where the robots should go to collect measure-
ments; third, the use of communication models as priors to
improve the performance of the system in terms of compu-
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Fig. 4 Block diagram representing the proposed system for commu-
nication map building. Once the proposed system selects and assigns
goals (locations) to the robots, the robots navigate towards them and,
from the new locations, a new planning process restarts

tation time and traveled distance. Figure 4 shows a depiction
of the pipeline of the proposed system.

4.1 Gaussian process-based communicationmap

Given the spatial correlation that radio signal strength dis-
plays, we use a GP (Rasmussen and Williams 2006) to
represent the communication map. Such a model can also
be used to predict signal strengths in areas where mea-
surements have not been collected yet, with an associated
uncertainty. Specifically, f̂ (defined in Sect. 3) can be cal-
culated as a posterior distribution fitted over a set of noisy
observations made by robots which navigate and coordinate
in the environment to collect signal strength measurements.
Assume that the robot team as a whole collected q mea-
surements over the environment. Let Y = [y1, y2, . . . , yq ]T
and X = [x1, x2, . . . , xq ]T be the set of those measure-
ments and the set of the corresponding pairs of locations
fromwhere they have been collected, respectively; recall that
xi ∈ A2. The signal strength observation yi = f (xi ) + ε is
affected by additive sensing error, which is assumed to be
i.i.d. with ε ∼ N (0, σ 2

n ). As covariance function k(x, x′),
which expresses the spatial correlation between any two val-
ues of f , a radial basis kernel (RBF) is used, as done in the
mainstream approach of GPs:

k(x, x′) = σ 2
f exp

(
− |x − x′|2

2l2

)
, (1)

where the signal variance σ 2
f and length scale l2 are param-

eters that indicate the amplitude and the smoothness.
Let us call K (X1,X2) the q × q matrix where X1 =

[x11, . . . , xq1 ]T and X2 = [x12, . . . , xq2 ]T are the locations of

two robots, Ki j = k(xi1, x
j
2), and Iq a q × q identity matrix.

The correlation between the observed function values is rep-
resented by the following equation:

cov(Y) = K (X,X) + σ 2
n Iq . (2)

Here, we assume the GP to have a constant mean func-
tion, as typically done in literature (Rasmussen andWilliams
2006); therefore it is fully specified by the parameter vector
θ = [σ 2

n , σ 2
f , l

2]T . In Sect. 5, we will show different mean
functions. Such a parameter vector can be computed by find-
ing the one that maximizes the observations log-likelihood,
that is,

θ∗ = argmax
θ

log P(Y | X, θ), (3)

where

log p(Y | X, θ)

= − 1

2

(
YTcov(Y)−1Y − log |cov(Y)| − q log 2π

)
. (4)

To calculate an estimate of the signal strength, the opti-
mal parameter vector θ∗ is used in unobserved regions
by evaluating the posterior. Specifically, called W =
[w1,w2, . . . ,wl ]T a set of arbitrary location pairs for which
a query to get the corresponding signal strength estimate
is performed, P( f (W) | X,Y) ∼ N (μW, �W), where
the mean vector is obtained as μW = μ(W) + K (X,W)T

K (X,X)−1(Y − μ(X)) and represents the estimate f̂ (W),
while the covariance matrix is given by �W = K (W,W) −
K (X,W)T K (X,X)−1K (X,W). Note that the main diago-
nal of 6W is called predictive variance and quantifies the
uncertainty of estimates inW.

The GP provides a mechanism to integrate noisy readings
collected in the environment into a posterior distribution of
the signal strength. Such a posterior can be used to obtain
link estimates with quantified uncertainty. To deploy such
a mechanism in real multi-robot settings, two issues need
to be tackled. The first one is to design a mission execu-
tion scheme according towhich robots repeatedly coordinate,
gather sensor data, share information, and update the com-
munication map, maximizing Eq. (4). The second problem
is to design utility functions to optimize the online selection
of joint data-gathering locations. Both problems are central
in the definition of sensing strategies, presented in the next
section.

4.2 Sensing strategies

A signal strength measurement at the joint location xi j =
(pi ,p j ) is obtained by a robot at location pi polling another
robot at location p j . Given the 4D state space that needs to
be explored (A × A), it is not feasible to densely cover it.
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The key idea of the designed sensing strategies is to privilege
data acquisition locations that are informative, namely that
are expected to induce high reductions in the current commu-
nicationmap’s uncertainty, thus limiting the distance traveled
by robots and providing high-quality communication maps.

Furthermore, robots might differ in terms of compu-
tational capabilities (as often happening in heterogeneous
multi-robot systems). This characteristic of the robotic sys-
tem would add some constraints for the GP parameter
estimation process. As such, we design strategies for the fol-
lowing two settings. In the homogeneous setting, we assume
that any robot has an onboard computer with sufficient com-
putational power to run the GP model. In the heterogeneous
setting, only few robots can compute online a GP model,
while others (cheap/basic platforms) just navigate and col-
lect measurements.

To construct the communication map, robots need to col-
lect pairwise measurements. This requires the presence of
explicit coordination between at least two robots, other-
wise we cannot guarantee that measurements are performed
between informative locations of the environments. We
present two strategies that employ a role-based leader-
follower paradigm. In particular, the robots have the follow-
ing roles: leaders are robots that maintain a communication
map by iteratively updating the GP model according to the
measurements acquired so far. They are also in charge of
choosing the best locations to visit in coordination with the
corresponding followers. In general, multiple leaders can be
present in the robotic team. They can share information dur-
ing the mission, as well as meet at the end of the mission
to merge their measurements to build a final communication
map. In our system, the leaders compute the computationally
expensive GP models (complexity is cubic in the number of
collected measurements, as illustrated in what follows), but
distributed computation of GPs could be considered (Deisen-
roth and Ng 2015).

Coordinationbetweendifferent groupsof leader-followers
is achieved by broadcasting or selectively relaying rele-
vant information to be shared in a multi-hop fashion. In
practice, the two strategies give rise to a “grouply dis-
tributed” multi-robot system. Each group of robots acts as
an autonomous entity and benefits from episodic encoun-
ters with robots belonging to other groups, while, at the
same time, each follower is subject to the directives of the
corresponding leader. The computation is distributed over
groups of robots that are in intermittent communication with
the other robots of the same group (as detailed later). Both
strategies favor selection of locations in regions of A2 cur-
rently displaying high predictive variance and try to spread
the robots. The strategy we propose for the homogeneous
setting is called Pairwise Mapping (PM), while the one tai-
lored for the heterogeneous setting is called RegionMapping
(RM).

4.2.1 Pairwise mapping in homogeneous settings

With the PM strategy, the team is divided in pairs of robots,
where one robot acts as leader and the other one as fol-
lower. The leader iteratively drives itself and the follower
to take measurements in the pairs of locations p∗

l ,p
∗
f ∈

A2, |p∗
l − p∗

f | ≤ Rc currently displaying a high predictive
variance in the current communication map. While moving
to such locations, the two robots poll other robots in the envi-
ronment for additional measurements. The polling frequency
is adapted from the estimated mission length, to limit the
number of acquired samples. Coordination between differ-
ent leader-follower pairs is achieved in two ways. First, each
robot broadcasts the waypoints of its current path, along with
those of its corresponding teammate. In this way, the other
leaders knowwhich regions ofA2 can be excluded from their
planning because already visited and sensed by other robots.
Second, each robot maintains an updated collection of all the
data gathered by the team by periodically asking its team-
mates to selectively relay the portion of the collected dataset
not yet received by any other team member. This is done to
make the most updated dataset available to each leader for
training a new GP at replanning time.

In case two robots are not able to communicate from two
target locations p∗

l ,p
∗
f , a recovery mechanism is adopted.

Specifically, a pair of backup locations are selected and
assigned to robots. The selection criterion — see below —
guarantees the presence of a communication link. Denoted rl
and r f the leader and follower robots, respectively, the PM
strategy is formally defined by these steps:

(1) rl and r f are connected;
(2) rl selects the target locations, p∗

l ,p
∗
f , and backup loca-

tions pbl ,p
b
f (see Algorithm 1), informing r f ;

(3) rl and r f agree on a deadline td to reach p∗
l and p

∗
f , cal-

culated according to the length of the path between the
current positions of the robots and their target locations
and the robots’ speed (see below);

(4) rl and r f move top∗
l andp

∗
f , opportunistically exchang-

ing the collected signal data and the undertaken path
with other teammates, and possibly polling them to get
additional measurements;

(5) if rl and r f are connected before td , go to Step (1);
otherwise, go to the next step;

(6) rl and r f set pbl and pbf as target locations; as soon as
they regain connection, go to Step (1).

In particular, in Step (3), the value of the deadline td can
simply be chosen as the maximum estimated arrival time of
the two robots, calculated knowing the length of the path and
the speed of the robots, augmented by some tolerance value.
In general, such a tolerance value depends on the complexity
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Algorithm 1 PM planning algorithm for a pair rl , r f
Input: D (dataset), pl , p f (current locations),P (teammate paths),M (environment

map), nPMs (# samples), dmin (minimum distance)
Output: p∗

l , p∗
f (target locations), p

b
l ,pbf (backup locations)

1: J ← extrapolateJointLocations(P)
2: X ← sampleLocations(M, nPMs ,J , dmin)
3: ` ← learnHyperParams(D)
4: 6X ← predictUncertaintyGP(X ,D, `)
5: p∗

1,p∗
2 ← argmax(p1,p2)∈X {6xx + 6x′x′ }(x = (p1,p2), x

′ = (p2,p1))

6: p∗
l ,p∗

f ← assignMinMaxDist(p∗
1, p∗

2, pl ,p f )

7: pbl , pbf ← backupDest(p∗
l ,p∗

f ,M)

of the environment and on the robots’ localization uncer-
tainty. From some preliminary experiments, we selected to
augment the maximum arrival time of rl and r f by 4% for
both simulated and real robots.

Algorithm 1 describes how each leader chooses the next
pairs of target and backup locations. The algorithm takes
as input the collected signal data D = {X,Y}, the current
leader-follower locations pl ,p f , the paths currently under-
taken by the other leader-follower pairs P , and a map of
the physical environment M. As additional parameters, the
algorithm requires the number of samples nPMs to generate,
and a value dmin used to exclude some location pairs from
planning as they will be probably close to pairs already vis-
ited by other subteams. Initially (Lines 1–2), the algorithm
samples candidate pairs of locations X where to send rl and
r f . Specifically, it first computes the setJ of joint waypoints
that the other leader-follower teams will traverse while mov-
ing to their target locations, assuming a constant speed along
their path; then, it selects nPMs samples from A2 at distance
not greater than Rc, pruning those that are not at least dmin

far apart (in travel distance) from each location pair in J .
In Line 3, a new GP is trained with the gathered data, and
in Lines 4–5 the most uncertain pair p∗

1,p
∗
2 ∈ X is selected.

The two locations are then assigned to the robots rl and r f
to minimize the maximum traveled distance. This implic-
itly optimizes the energy consumption and produces p∗

l ,p
∗
f

(Line 6). Finally, in Line 7, backup locations pbl ,p
b
f are cho-

sen as the pair of points closest to the target locations, and for
which a safe communication link is guaranteed. We assume
that two robots can always communicate if within a given
distance (see Sect. 5 for distance values we use in experi-
ments).

4.2.2 Region mapping in heterogeneous settings

Also the RegionMapping (RM) strategy is based on a leader-
follower paradigm. Differently from the PM strategy, leader
robots (the more expensive platforms with powerful comput-
ers) have an arbitrary but fixed number of followers R f =
{r f1, . . . , r fk }. As in the previous strategy, leaders are in
charge ofmaintaining theGPmodel.However,with this strat-
egy, they iteratively drive the followers in regions R∗ with

high predictive variance. Once a region has been selected,
the leader moves to its center pc. At the same time, the
followers move towards safe positions S f = {ps1, . . . ,psk},
where they can acknowledge that the leader has reached its
goal. Then, the followers move along pre-computed paths
P f = {p1, . . . , pk} that can significantly reduce the pre-
diction uncertainty in the region of A2 centered in pc. If
a follower r fi cannot communicate with the leader when it
gets to the end of its path, it will move to its backup location
chosen from a pre-computed set B f = {pb1, . . . ,pbk}. The
coordination among teams is achieved by letting the lead-
ers choose regions to visit whose centers are sufficiently far
apart. As with the PM strategy, robots can also acquire addi-
tional measurements, while selectively relaying the gathered
dataset. The rationale behind this strategy is to possibly avoid
re-visiting the same region, by lowering down the uncertainty
around a fixed leader position, rather than taking only sparse
measurements. Formally, leader rl and followers R f act as
follows:

(1) rl is initially connected to each follower in R f ;
(2) rl decides the region R∗ to explore next, computing pc,

P f , S f , B f (see Algorithm 2);
(3) rl moves to pc, while the followers move to S f ;
(4) followers follow their paths in P f , rl remains still;
(5) followers regain connection with rl either at end of their

paths or by going to their backup locations in B f ; go to
Step (1).

Before executing Step (4), once the leader reaches pc, it
waits until all followers communicate with the leader. In this
way, excessive delays of some of them can be handled by
reorganizing the paths of the remaining ones.

Algorithm 2 describes the RM strategy. The algorithm
takes as input the collected signal data D, the current leader
and followers locations pl , P f , the centers of the regions
being visited by other groups Pc as known by rl , a map of the
physical environment M, the number of regions to sample
nRMs , a parameter dmin used for coordinating the spreading of
the different groups, and the number of waypoints to visit in

Algorithm 2 RM planning algorithm for a group rl , R f

Input: D (dataset), pl , P f (current followers locations), Pc (other region centers),

M (environment map), nRMs (# region samples), dmin (minimum distance), nw (#
waypoints)

Output: pc (new region center), P f (followers’ paths), S f (initial locations), B f
(backup locations)

1: R ← sampleRegions(M, nRMs ,Pc, dmin)
2: ` ← learnHyperParams(D)
3: �[R] ← meanVarianceRegionsGP(R,D, `)
4: R∗ ← argmax

R∈R
�[R]

5: W ← getWaypoints(R∗, nw,D, `)
6: S f ← initialDests(P f ,W,M)

7: P f ← assignMinMaxDistPaths(S f ,W,M)
8: B f ← backupDest(P f ,M)
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the new region nw. As with the previous strategy, a suitable
choice of dmin avoids that two different subteams of robots
with a close replanning time decide to start mapping the same
region of the environment.

In Line 1, nRMs candidate circular regions R with diame-
ter 2Rc are selected. In Line 2, a new GP is trained with the
gathered data, and in Lines 3–4 the region R∗ ∈ R with the
highest mean predictive variance is selected. In Line 5, a set
W of nw waypoints to visit is selected from a fine-grained
discretization ofA∩ R∗ according to the following method:
iteratively choose the point pw displaying the highest sum
of predictive variance when paired with pc and sufficiently
far apart from the already chosen waypoints (this distance
threshold could also be the same dmin). Notice that this spac-
ing is required because it would be inefficient to choose a
waypoint very close to another one, since the uncertainty of
the former will be already reduced by visiting the latter. In
Line 6, the initial safe destinations for the followers S f are
selected as follows: first, followers are iteratively assigned to
the closest locations in W guaranteeing a safe communica-
tion link to pc.W is updated accordingly, so that, at the end
of this first phase,W∩S f = ∅. Then, if any follower remains
unassigned, its corresponding safe location is chosen as the
closest location from its current location in A guaranteeing
a safe communication link. In Line 7, the remaining way-
points are assigned to the robots with the aim of minimizing
the maximum followers’ traveled distance. Finally, in Line
8, the backup locations are computed as in the PM strategy.

Note that, in Line 7, the objective of minimizing the bot-
tleneck traveled distance gives rise to the Multiple Traveling
Salesman Path Problem, which is NP-hard (Rekleitis et al.
2008). This problem can be formalized in terms of a simple
Mixed Integer Linear Program (MILP) as follows. With a
slight notation overload, let f be a generic follower robot,
and V ( f ) be the setW ∪ {psf }. We define three sets of vari-

ables: x f
i j , with i, j ∈ V ( f ), is a binary variable taking value

1 iff in the path of f a visit to i is followed by a visit to j ; y f
i ,

with i ∈ W , is a binary variable taking value 1 iff waypoint
i is visited by f ; u f

i , with i ∈ W , is a continuous variable
representing the possible position of waypoint i in the path
of f . A continuous variable b is also defined to represent the
objective function value. The MILP model reads as follows:

min b s.t. (5)∑
j∈V ( f )

x f
psf j

=
∑

i∈V ( f )

x f
ipsf

∀ f ∈ R f (6)

∑
j∈V ( f )

x f
psf j

= 1 ∀ f ∈ R f (7)

∑
i∈V ( f )

x f
iw =

∑
j∈V ( f )

x f
w j ∀ f ∈ R f ,∀w ∈ W (8)

∑
j∈V ( f )

x f
w j = y f

w ∀ f ∈ R f ,∀w ∈ W (9)

∑
f ∈R f

y f
w = 1 ∀w ∈ W (10)

b ≥
∑

i∈V ( f )

∑
j∈W

di j x
f
i j ∀ f ∈ R f (11)

2 ≤ u f
w ≤ |W| + 1 ∀ f ∈ R f ,∀w ∈ W (12)

u f
i − u f

j + 1 ≤ |W|(1 − x f
i j ) ∀ f ∈ R f ,∀i, j ∈ W. (13)

Constraints (6) and (7) enforce, for each follower, a path
that starts and ends at the corresponding psf . Constraints (8)
and (9) guarantee path consistency. Constraints (10) impose
that each waypoint must be visited by exactly one follower.
Constraints (11) bind the objective function to the maximum
traveled distance (notice that starting points are excluded
from the inner summation, as the problem does not require
building a tour). Finally, Constraints (12) and (13) avoid the
presence of subtours. The time required to solve thismodel to
optimality rapidly grows with the size of the input. However,
preliminary experiments showed that it is usually better to
keep the size ofW relatively small (i.e., only a few points), as
robots also periodically obtain measurements while moving
along their planned paths, as in the PM strategy (Sect. 4.2.1).

Both proposed methods consider all possible locations
uniformly sampled from the free space of the environment,
as no prior knowledge about the communication map is
assumed. This could result in an overhead in terms of trav-
eled distance, as well as computing time for updating the GP.
However, in the networking literature, researchers proposed
some communication models for indoor environments that
could give a prior to guide the modeling and the incremental
sensing process. In the following, we present some of such
communicationmodels and their use in our proposed system.

4.3 Communicationmodel-based filtering

In this section, first, we present communication models from
the networking literature, with an evaluation of their fidelity;
second, we show how such models can be used in our
approach to filter signal strength measurements polled by the
robots when updating the communication map and to select
locations where robots should go.

4.3.1 Prior from communication models

In general, it is hard to directly estimate the RSSI value
knowing the map of an environment, because, for example,
the compositions of the obstacles are not known. However,
in the communication literature, some models — such as
Free Space, Two-ray, Ten-ray, Wall Attenuation Factor, and
MultiWallAttenuation (Goldsmith 2005)—havebeen shown
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to have relatively good accuracy in estimating the signal’s
power loss during propagation (also known as path-loss).1

These models vary in terms of computational complexity
and accuracy. Furthermore, each model usually has several
parameters and quantifying them accurately is hard, as they
depend on the specific physical environment. The challenge
in using such models is to optimize the related parameters to
adapt the models to the signal strength measurements taken
from the actual environment (Bahl and Padmanabhan 2000).

We select and evaluate four communication path-loss
models with varying complexity that have been tested in
indoor environments. In the following, we report the equa-
tions for the different models,2 referring to transmitter pi and
receiver p j .

Distance model (DIST) A (free space) distance-based path-
loss model assumes that the signal is passing through
vacuum; the path-loss observed by the signal depends only
on the Euclidean distance between locations of transmitter
and receiver (Rappaport 1996; Goldsmith 2005):

Ldist(pi ,p j ) = − 10 log10

[ √
GLλ

4πd(pi ,p j )

]2
, (14)

where GL is the product of transmitter and receiver antenna
gains3; λ is the wavelength of the transmitted signal (m); and
d() is the Euclidean distance between two locations (m).

Wall attenuation factor model (WAF) An empirical model
(Bahl and Padmanabhan 2000), which assumes the physical
map of the environment to be available beforehand, as path-
loss is influenced by the number of walls between transmitter
and receiver, in addition to the Euclidean distance:

Lwaf(pi ,p j ) = 10n log10
d(pi ,p j )

d0

+
{

w(pi ,p j ) × WAF if w(pi ,p j ) < C

C × WAF otherwise,

(15)

where n indicates the rate of change in path-loss (dBm); d0
is a reference distance (m), w(pi ,p j ) is the number of walls

1 It should be noted that all these path-loss models are independent of
the used communication frequency, i.e., they do not restrict the analysis
to WiFi/LTE, etc.
2 We slightly change the notation of the original papers tomake notation
uniform and consistent with that used in this paper and to highlight
variables and parameters.
3 Gain is defined in terms of the antenna’s capability to send/receive
signals in a direction.

on a straight line between transmitter and receiver, C is an
empirical constant—i.e., the maximum number of walls that
can make a difference in path-loss; and WAF is a constant
factor specific to the type of each wall (dBm).

Multi-wall model (MWM) Another empirical model
(Zvanovec et al. 2003) based on the following equation:

Lmwm(pi ,p j )

= LFSL(pi ,p j ) +
N∑
l=1

klwl(pi ,p j ) + k f f(pi ,p j ), (16)

where LFSL(pi ,p j ) = L0+10n log(d(pi ,p j ))models a free
space path-loss model (dBm), with L0 being the path loss at
a reference distance (dBm); wl( ) is the number of walls of
l th type between transmitter and receiver, kl is a parameter
for the attenuation affecting the signal for a wall of type l
(dBm); f(pi ,p j ) is the number of floors between transmitter
and receiver, and k f is the attenuation parameter observed
by signal due to the type of that floor (dBm).

ITU radio communicationmfodel (ITU) An empirical model,
used by the IEEE 802.15 Working Group for Wireless Per-
sonal Area Networks (Hernandez et al. 2012), for testing the
proposed channel model of a signal propagating in an arbi-
trary environment:

L itu(pi ,p j ) = 20 log10 f

+ n log10 d(pi ,p j ) + k f f((pi ,p j )) − 28, (17)

where n is the distance power loss coefficient (dBm); f is
the communication frequency (MHz); d( ) is the distance
between two locations (in m); k f is the floor penetration
loss factor (dBm); f( ) is the number of floors between two
locations.

Each parameter of the above models should be fine-tuned
according to the specific environment. Values for parameters
are heuristically suggested in the related papers, usually for
a communication signal at 2.4GHz (WiFi) for different sce-
narios, including indoor office environments. In this paper,
we start from those and fine tune them according to the char-
acteristics of the hardware on the Turtlebot 2 robots used for
experiments.

Considering the transmitting power Tpower (dBm), the
RSSI between transmitter and receiver can be then calcu-
lated as:

RSSI(pi ,p j ) = Tpower − L()(pi ,p j ). (18)
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As a physical map of the environment is available in our
setting as a gridmap, a communicationmap can be computed
as a prior for every location reachable by a receiver robot,
given a fixed location for a transmitter robot. Note that, as
some locations are inaccessible to the robots— e.g., because
of doors — and grid maps are pre-built by the robots, the
number of walls is an estimate of the actual number of walls.
Specifically, every change from free space cell to occupied
cell along the line segment connecting pi and p j in the grid
is counted as one wall. Grid maps are preprocessed in such
a way that small objects are removed from them and thus
not counted as walls. Generating a communication map as
prior using the above models shows that locations closer to
the fixed robot observe higher RSSI values, while distant
locations have lower values. While this trend seems to be
common, the RSSI values from these priors are different; for
instance, WAF model seems to return values that are smaller
than those of other models.

The accuracy of the communication models is empirically
evaluated. In particular, the error is calculated as the differ-
ence between the measurements actually collected by two
Turtlebot 2 robots, described in Sect. 5.3, and the correspond-
ingRSSI values estimated by the communicationmodels.We
conducted 6 different preliminary experiments in the Engi-
neering building of the University of South Carolina.4 Each
experiment involved one robot fixed at an arbitrary location,
and the other robot following a precomputed path. Each robot
measures the WiFi signal strength at 10Hz along with its
position in the map. The physical environment used for these
experiments is depicted in Fig. 12a.

Table 1 shows mean (and standard deviation) error cal-
culated for the 6 different experiments. An accuracy error
of < 20 dBm is comparable to what is shown, for example
in Bahl and Padmanabhan (2000). It is worthmentioning that
we observed a change of 8 dBm to 10 dBm in the RSSI value
while changing the height of the antenna (by a few centime-
ters) on the robot. As such models display a relatively low
error, the use of such communication models as prior, shown
in the next section, is justified.

Also note that we included (in the last row of Table 1) our
GP model built on the measurements taken and validated its
modeling power for the signal strength finding that its error
is the lowest among the different models.

4.3.2 Use of communication models as prior

First of all, the communication models described in the pre-
vious section can be directly integrated in the GP as mean
function to possibly improve the quality of the predictions,

4 All experiments were conducted at night time, so the interference due
to moving objects/humans is minimal, except for the people performing
the experiment.

making the prediction process slightlymore computationally
expensive than using a zero-mean function. In the experi-
mental section, we discuss the impact of varying the mean
function on the overall performance.

Second, such priors can be used to guide the robots on
where to take measurements. In particular, for a given loca-
tion of a leader (either for the PM or for the RM algorithm),
we design an algorithm to generate a set of locations that
can be provided as goals to the followers and to filter mea-
surements in the GP training dataset. The main idea is to
choose locations that are highly informative, namely those
which present some change in the field, as constant values
can be easily approximated by the underlying assumption of
the GPs, namely smoothness of the modeled phenomenon.

Mathematically speaking, the RSSI slope is estimated at
each location by the first order derivative of the communica-
tion map built as prior from the communication models. The
change of slope between neighbor locations in themap can be
calculated by the second order derivative. If the slope change
between two locations crosses a threshold (τ ), that location
is selected as one of the possible goals of the moving robot
(follower). This idea is explained in detail in Algorithm 3.
Specifically, the inputs are the chosen communication model
comm_model (see Sect. 4.3.1), the physical map A of the
environment to be used for creating a communication map
as prior, and a specific location (x1, y1) in the environment
for the leader. Lines 1–3 create a communication map as
prior according to one of the communication models and the
environment A for all possible locations where the robots
can go. According to such a communication map, specific
goals are calculated in Line 4. In particular, the first and sec-
ond derivatives of such a communication map are computed
in Lines 8–10 and Lines 11–13, respectively. The locations
that display a second derivative high value are selected as
candidate locations where to go (Lines 14–17).

Additionally, locations generated from the algorithm can
be used to filter signal strength measurements polled by the
robots. Remind that the polling frequency between twomov-
ing robots can be set arbitrarily. In practice, high frequencies
allow robots to collect large datasets; at the same time, it
would require large computational efforts for the GP param-
eter estimation. Note that maximizing Eq. (4) takes O(n3),
where n denotes the number of samples: as a consequence,
their number should be limited to a set of few but significant
ones. If measurements are taken close to the locations found
by Algorithm 3 within a given range, they are used for the
GP update. It is also important to note that τ needs to be
generated heuristically. When τ is high, the algorithm might
not find a sufficient number of candidate locations. As such,
the communication map cannot be built accurately. Lower
τ could result in too many goals for the robots, making the
GP computation process too expensive. From our prelimi-
nary experiments, τ = 11 (± 10%; measure unit dBm/m2)
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Table 1 Errors (dBm) between the calculatedRSSI valueswith the differentmodels and the actual robotmeasurements, for 6 experiments performed
varying locations of a robot acting as a transmitter; while another moving robot follows a fixed path and collects data

Path-loss model Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Distance 8.09 4.98 9.40 7.27 9.40 7.28 17.56 9.27 10.89 8.54 6.14 5.62

WAF 12.02 10.24 15.33 12.08 15.34 12.09 27.29 10.87 20.06 11.85 17.47 7.04

MWM 7.98 5.01 9.37 7.26 9.38 7.27 17.66 9.29 11.15 8.58 4.03 3.66

ITU 11.33 7.84 15.49 10.28 17.79 7.09 29.02 11.74 20.51 9.66 15.40 6.43

GP 2.92 2.43 3.14 2.48 3.26 2.38 2.90 2.30 3.18 2.30 2.91 2.09

The values are comparable to what is shown, for example, in Bahl and Padmanabhan (2000)

Algorithm 3 Goals for Moving Robot to Pick Observations
Input: A (physical map of the environment), pi (possible locations that robots can

occupy), comm_model, (x1, y1) ∈ A (considered location of leader), τ (threshold)
Output: List of candidate goals for the moving robot {(xdi , ydi )}, ∀i ∈ goals
1: for (x2, y2) ∈ pi − (x1, y1) do

2: rssi
(x2,y2)

(x1,y1)
← calculate_rssi(A, x1, y1, x2, y2, comm_model); � Using

appropriate Equation from Eqs. (14), (15), (16), (17)
3: end for
4: goals ← get_goals(rssi, x1, y1, pi );
5: return goals
6: procedure get_goals(rssi, x1, y1, pi )
7: goals ←{} � Return variable
8: for (x2, y2) ∈ pi do � Calculate the slope of RSSI

9: rssi_slope
(xi ,yi )
(x1,y1)

← calculate_slope(x1, y1, x2, y2, rssi)

10: end for
11: for (x2, y2) ∈ pi do � Calculate the slope of rate of change of RSSI

12: rssi_change_slope
(xi ,yi )
(x1,y1)

← calculate_slope(x1, y1, x2, y2, rssi_slope)

13: end for
14: for (x2, y2) ∈ pi do

15: if rssi_change_slope
(xi ,yi )
(x1,y1)

> τ then

16: goals.add((xi , yi ))
17: end if
18: end for
19: return goals
20: end procedure

is a reasonable value for all the four models. This provided,
for example, in the environment of the Engineering build-
ing at the University of South Carolina between 30 and 120
goals for various communication models, among 212 pos-
sible locations that were uniformly sampled in the tested
environments (see Fig. 5).

Note that, to account for inaccuracies of the prior model,
locations within a given radius of those generated by Algo-
rithm 3 are added to the list of candidate locations.

The proposed method to select locations is integrated in
the PM and RM strategies by filtering the locations consid-
ered for the follower. Then, PM and RM algorithms choose
the set of goals according to the strategies described in
Sect. 4.2.

Using the data collected during our experiments described
in the previous section—i.e., one robot is fixed at a location,
while the other one moves along a fixed, known path — we
evaluate the GP built with all measurements and the GP built
only with filtered measurements by the proposed method. In
general, the GP with filtered data maintains low variance in

Fig. 5 Candidate locations uniformly spaced in the environment (a)
without the use of a communication model and candidate locations
(black) considered for followers for a given location of the leader in red
(b) (Color figure online)

GP predictions and low Root Mean Square Error (RMSE).
At the same time, the GP training time reduces by 50%,
compared to the GP with all data. For example, the RMSE
between the observed data and the predicted values by the
GPs, in one of the experiments, is 11.01 for the GP with all
data and 11.03 for the GP with filtered data. These results
validate the use of such a filtering approach. Further results
are presented in the next section.

5 Experimental evaluations

In this section, we evaluate our online sensing strategies dis-
cussing their performance obtained both in simulation and
with real robots.

5.1 Experimental setup

To ensure repeatability under controlled conditions, the sys-
tem has been first evaluated with a realistic 2D simulator,
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Stage (Vaughan 2008). We also deployed our strategies on
a team of real Turtlebot 2 robots (Fig. 1) to assess their
validity under real-world conditions. Robots’ control stacks
have been implemented in ROS (Quigley et al. 2009), while
tasks based on Gaussian Processes exploit the GPy frame-
work (GPy 2012).

In our experiments we considered teams of 2, 4, and
(limited to simulations) 6 robots for which we perform
comparisons among the PM and RM strategies introduced
in Sect. 4.2 and a baseline strategy RAND. The latter is
an uninformed strategy where each robot moves randomly
while polling teammates when they occasionally fall within
its range. As a consequence, robots following the RAND
strategy do not require to maintain a GP for selecting goal
locations. The consequent time savings results in potentially
collecting amounts of data samplesmuch larger thanwith the
PM or RM strategies. Thus, to ensure a fair comparison and
focus on the quality of the collected data, we set polling peri-
ods seeking a computational effort that is balanced (ensuring
that all the strategies roughly collect the same amount of
data samples) and affordable in real-time (preventing situa-
tions where the time needed for training GPs dominates the
time devoted to all the other operations). From a preliminary
empirical evaluationwe draw the following values as suitable
ones: for 2 robots, 3 s for PM and RM, 3.5 s for RAND; for
4 robots, 5 s for PM and RM, 10 s for RAND; for 6 robots,
10 s for PMandRM, 18 s for RAND. (Notice how the polling
period of RAND is set to a higher value compared to PM and
RM due to the extra temporal costs these last ones incur for
training the GPs.) In addition, for the PM and RM strategies,
in determining backup locations (see Sect. 4.2) we assume
that two robots can always communicate if within a distance
of Rc/3, or Rc/2 if in line-of-sight.

In summary, an experimental configuration is defined
along the following dimensions:

– the environment where robots are deployed;
– the number of robots: in simulations {2, 4, 6} while with

real robots {2, 4};
– the sensing strategy: RAND, PM, or RM (with 1 or 2
leaders);

– whether the method for filtering measurements based on
the communication models is enabled (Sect. 4.3.2);

– the GP mean function: zero-mean, DIST [Eq. (14)], or
WAF [Eq. (15)].

The metrics used to evaluate the strategies consider the
quality of the GPs that would be obtained by merging all
the collected data in a rendez-vous of the whole team every
5 min. In particular, one measure of the quality is given by
the Rooted Mean Squared Error (RMSE) at time t on a given
test set (10,000 measurements collected randomly for simu-
lations; measurements collected following some predefined

Fig. 6 Simulation environments (office, left, and cluttered, right),
approximate size 80 m × 30 m

trajectories as described in Sect. 4.3.1 for real robots):

RMSEt =
√∑

xi∈A2( f̂ t (xi ) − f (xi ))2

|A2| . (19)

In addition, the average predictive standard deviation —
namely, the squared root of the predictive variance — of
the predictions is considered. The latter metric is fundamen-
tal for an online scenario, as ground truth is typically not
available. The cost of constructing a communication map is
assessed in terms of traveled distance and computing time to
train the GP.

5.2 Simulations

In the simulation experiments, the communication channel
is simulated using the signal propagation model proposed
by Bahl and Padmanabhan (2000)—i.e., Eqs. (15) and (18).
Such a communication model has been used in other simu-
lators, such as MRESim (Spirin et al. 2014) and USARSim
(Carpin et al. 2006), to test robot exploration strategies. In
addition, USARSim has been used in the RoboCup Res-
cue Simulation Virtual Robot Competition in search and
rescue scenarios. Note that in our real robot experiments,
considering environments where only robots are present, the
communicationmodelswere able to capture the general trend
of the signal strength. The parameters are empirically chosen
to achieve distance and signal strength comparable to those
observable with a Turtlebot 2 robot. In particular, Tpower =
− 38 dBm, d0 = 1 m, n = 2.3, WAF = 3.37, C = 5. A
bidirectional communication link is available between any
two simulated robots if RSSI(pi ,p j ) ≥ − 93 dBm in both
directions. The indicative communication range Rc is set to
50 m. A white noise ε ∼ N (0, 1) has been added to the
signal to obtain more realistic measurements.

Given that WAF communication model is used, we adopt
it also as the prior of our filtering method. The number of
pairs of locations obtained is around 150 over around 2000
pairs for both environments. Furthermore, we show results
by using a GP with zero mean, a mean function that uses
DIST [Eq. (14)], and one that uses WAF [Eq. (15)].

We select two representative environments of realistic size
depicted in Fig. 6. “Office” is a portion of the “sdr_site_b”
environment from the Radish repository (Howard and Roy
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7 Simulation experiments, office environment, zero-mean GP

2003), representing an indoor environment with corridors
and rooms. “Cluttered” is inspired from the “grass” environ-
ment of the MRESim repository (Spirin et al. 2014). It is
unstructured with many obstacles around.

We denote with RM-N the RM strategy where each group
is composed of N robots and we consider the presence of at
most 2 leaders. The following parameters are chosen from
preliminary experiments: nPMs = 10000, nRMs =100 for all
the team sizes, dmin = 25, 20, 15 m for 2, 4, and 6 robots,
respectively. The nw parameter is chosen to allow a fair cov-
erage of a region, compatibly with a mission duration set
to 30 minutes and accounting for the number of robots. In
particular, nw = 3|R f |, 2|R f |, 1|R f | for 2, 4, and 6 robots,
respectively. Five runs are executed for each experimental
configuration.

Figure 7 reports the results obtained in the Office envi-
ronment, using a zero mean GP. Looking at the prediction
performance for 2 robots (Fig. 7a, b), it can be observed that
all the strategies are able to significantly lower down both the

(a) (b)

Fig. 8 RMSE and GP training time for 4 robots in the Office envi-
ronment, varying the threshold value τ in Algorithm 3 to get different
number of candidate locations

RMSE and the predictive standard deviation. PM performs
slightly better than RM. In addition, PM has a comparable
performance with RAND in terms of RMSE and predictive
standard deviation—there is no statistical significant differ-
ence between the two. This means that, when the state space
of the spatial phenomenon to learn is large and the number
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Simulation experiments, office environment, first row: GP with DIST mean function, second row: GP with WAF mean function

of available robots is low, the use of a complex and informed
strategy to select data samplesmight not introduce significant
improvements in the map’s quality.

On the other side, benefits can be observed with respect to
efficiency. The traveled distance for the proposed strategies
(Fig. 7d) is consistently lower than the one from RAND. The
computation time (Fig. 7c) is comparable for the proposed
strategies without any filtering and RAND, while it is signifi-
cantly lower when the filtering technique is enabled (PM-waf
and RM-2-waf). This means that our sensing strategies move
robots around in an efficient way.

Figure 7e–l show results for 4 and 6 robots, respectively.
In these two settings, PM obtains better results compared to
RAND, with RM still not performing as well as PM over-
all. For the RMSE, the advantage offered by PM is slight,
but often statistically significant (e.g., p-value=0.004064 in
one-way ANOVA at 30 min between PM and RAND for 4
robots). The predictive standard deviation decreases using
PM around 15 minutes, which is consistently maintained
until the end of themission. Such improvement is statistically
significant (e.g., p-value=0.00005615 at 30 min between PM
andRAND for 6 robots). The results obtained byRM suggest
that it could not be convenient to spend toomuch time on low-
ering down the uncertainty of a single region. However, we
argue that, by setting the nw parameter equal to 1, we could
obtain a performance similar to that of PM even for 2 and 4

robots. The relatively comparable performance of RAND in
terms of map quality (RMSE and predictive standard devia-
tion) comes from the fact that this strategy uniformly samples
the spatial phenomenon (recall that robots keep polling each
other). However, also in such scenarios, RANDhas a remark-
able downside in the distance it requires the robots to travel,
making it a very inefficient sampling strategy.

While the quality of the communication map is slightly
worse when the proposed methods run the filtering method
of Sect. 4.3.2, the computation time and the traveled distance
are lower, making use of filtering preferable when computing
power is limited and time is a hard constraint.

Figure 8 shows results for the proposed strategies with
the filtering method, where the threshold value is varied to
obtain different numbers of locations. The number of loca-
tions obtained are ∼ 1600, ∼ 600, ∼ 300, ∼ 100, for no
filtering, τ = 0, τ = 5, τ = 11, respectively. As expected,
the less aggressive on filtering, the higher the quality of the
communication map in terms of RMSE. At the same time,
the GP training time increases considerably, resulting into a
training time close to that of the proposed strategies with-
out any filtering. The samples used to build the GP models
without filtering is around the 90% of the samples used with
RAND, while the samples used to build the GP models with
filtering is around the 50% of the samples used with RAND.
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(a) (b) (c) (d)

Fig. 10 Simulation experiments, cluttered environment, zero-mean GP, 6 robots

Byusing differentGPmean functions, the benefit is visible
in the quality of the communication map for all the methods
(Fig. 9 shows results with 6 robots). In particular, also our
proposed strategies using filteringmethod obtain comparable
RMSE and predictive standard deviation. There is a slight
increase in the GP training time because of the extra term in
the GP calculations for the mean function.

The results for the Cluttered environment are very simi-
lar to those of Office, and all the above considerations still
hold—see Fig. 10 for results with 6 robots.

Finally, Fig. 11 shows two instances of communication
maps built for a source located at the center of the simulation
environments for 6 robots using the PM strategy. Intuitively,
the communicationmaps capturewell how the signal strength
changes over the environment: it is maximum close to the
transmitter robot (at the center) and then it decreases with
distance, keeping higher in locations in line-of-sight with
the transmitter robot (for example, see the ridge in the com-
munication map in Fig. 11a).

5.3 Experiments with real robots

We also deployed and tested our algorithms on a team of two
and four TurtleBot 2 robots, in the Swearingen Engineering
Center at the University of South Carolina. Each platform
is equipped with an RGB-d camera (Microsoft Kinect) and
an on-board laptop with an integrated WiFi card. The maps
used for localization are built in a setup phase, where a single
robot is manually driven around the environment to collect
readings, processed by the ROS gmapping package (Grisetti
et al. 2007).

Two of the environments used are depicted in Fig. 12.
They have different characteristics: the first one (shown in
Fig. 12a) is characterized by long corridors with some inter-
secting short corridors and one small loop. Note that between
the two long corridors, there is an outdoor space, which the
robots cannot access. The other environment (in Fig. 12b)
has instead corridors surrounding small office rooms.

Starting with the parameters for the algorithms from the
simulation, we performed first some initial experiments to

Fig. 11 Maps for a source located in the center of the simulation envi-
ronments (6 robots, PM strategy)

Fig. 12 Two environments, portions of third floor at Swearingen Engi-
neering Center, University of South Carolina
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 Results with two Turtlebot 2 robots in Lab-Corridors, where the first column identifies the use of the GP with zero mean, the second one
the use of the GP with DIST mean function, and the third one with MWM mean function

fine tune them to account for realworld challenges. For exam-
ple, the timeout td needs to be increased due to locomotion
noise which, in the real world, is clearly non-negligible.

Some preliminary experiments showed that the MWM
communication model provides a good number of candidate
locations and has good accuracy (see Sect. 4.3.1) for the
environments considered. As suchMWM is used to generate
candidate locations using Algorithm 3. PM, RM, and their
variants with MWM as communication prior are compared
against RAND.

For each of the two physical environments of Fig. 12, two
and four Turtlebot 2 robots are used to verify the performance
of both the proposed and the baseline strategies, for a 20 min
duration. Fig. 14 Distance traveled with two Turtlebot 2 robots in Lab-Corridors
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(a) (b) (c) (d)

Fig. 15 Lab-Corridors environment, zero-mean GP, 4 robots

The trends of the quantitative results are slightly different
to those obtained in simulation as the robots travel compara-
ble distances with the different strategies – Figs. 13 and 14
show results for two robots on the map shown in Fig. 12a.
This can be explained by the fact that, differently from simu-
lations, the environment has narrower corridors which has
two implications: first, the corridor structure of the envi-
ronment guides the robots; second, such narrow corridors,
together with motion noise, increases the probability of col-
lisions. The values of uncertainty and RMSE are slightly
higher compared to the simulation and they show also some
increase during the mission: besides the higher complexity
of the signal, the main reason lies on the fact that the robots
travel much less distance (e.g., 200 m with real robots vs.
800 m in simulation) and as such they collect a lower num-
ber of samples. However, the GP model represents well the
measurements with a RMSE and a predictive standard devi-
ation comparable to those of simulation.

Figure 15 shows the results for 4 robots in the Lab-
Corridors environment. The results for the Office-Corridors
environment of Fig. 12b are very similar to those of Lab-
Corridors, and all the above considerations still hold.

Using communication models as mean function for the
GP does not provide as much benefit as in simulation: the
RMSE is slightly higher when using DIST andWAF asmean
functions, compared to a zero-mean function. However, GP
models with DIST andWAFmean functions seem to provide
a slightlymore reliable prediction, as shown by the predictive
standard deviation (see Fig. 13d–f).

The communication map that is built by GP looks con-
sistent with the obstacles; e.g., Figs. 16 and 17 show a 2D
communicationmap, by fixing one location, in the twomaps.
Since we experience some noise in localization, the asso-
ciated WiFi strength measurements turned out being not
accurate in a limited number of times. Further, although our
approach computes the utility function not only on the basis
of the selected destination locations, but also of the paths fol-
lowed by the robots, few times the robots interfered with the
motion of others, especially using RAND and the PM strat-
egy, which have a lower coordination level compared to RM.

Including the communicationmodel in theGPmean function
reduces the absolute value in terms of standard deviation, at
the cost of slightly increasing the training time.

5.4 Discussion

Some general insights are highlighted here from the results
obtained by our experimental activity, aswell as some lessons
learned that are starting points for our future work.

In general, when increasing the number of robots and
when the main constraint is determined by the traveled dis-
tance, our coordinated sensing strategies are beneficial to
avoid any overlap in measurements. Furthermore, if com-
putational resources are very limited, including filtering
methods makes the proposed system real-time. Using a com-
munication model as a mean function of the GP provides
benefit in terms of modeling, however slightly increasing
the computational demand. In the real world, while the gen-
eral highlights still hold, the communication channel is much
more complex to bemodeled, especially considering dynam-
icity. Moreover, the noise in locomotion and sensing needs to
be taken into account also during the planning phase to avoid
robots to be stuck and prevent wrong measurement associ-
ations. However, also in real world, our proposed sensing
strategies provide good results.

6 Conclusion

In this work, utilizing a Gaussian Process representation of
the WiFi signal strength distribution, we designed and tested
multi-robot online sensing strategies for mapping the qual-
ity of WiFi communication links between pairs of locations
in a known environment. Such sensing strategies are fit for
homogeneous or heterogeneous teams of robots. In addition,
we introduced the use of communication models as prior to
improve overall performance and computational efficiency.
Experiments in simulation and with real robots show how
our distributed coordination strategies can effectively and
efficiently perform communication map building task.
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Fig. 16 An instance of a communication map (a) and the corresponding predictive standard deviation (b) built by two Turtlebot 2 robots in
Lab-Corridors

Fig. 17 An instance of a communication map (a) and the corresponding predictive standard deviation (b) built by two Turtlebot 2 robots in
office-corridors

Future work will extend the approach to explicitly con-
sider temporal variations and will employ more complex
communication models that account for multiple paths,
e.g., (Lindh and Johansson 2013). In addition, a method
that allows long-term monitoring of WiFi signal strength
is in our plans. Furthermore, it will be interesting to have
dynamic teams and more synchronous coordination among
different groups of robots, also in order to plan for sequences
of pairwise measurements. The task of building communi-
cation maps will be integrated together with other missions
robots might have, such as exploration (e.g., see the prelimi-
nary multirobot system for exploration reported in Amigoni
et al. (2018), which uses communication maps built with an
approach similar to that presented in this paper) or environ-
mental monitoring (Manjanna et al. 2017). Extrapolating this
work to outdoor, under-water, and aerial environments opens
several interesting research directions.
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